
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page1

Chapter 26
Program Design

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Design Goals

● Reliability
● Economy
● Ease of Use

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Design Factors

● Simplicity
● Information Hiding
● Expandability
● Testable
● Reusability / generality

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Design Principles

1. Think – Then code!
2. Be Lazy (aka. Efficient)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Procedure Design

● Procedures should do one thing well.
● Interface should be as simple as possible.
● Global interactions should be as limited as

possible.
● Details are hidden.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Modules

● Organize (Disorganization = government)
● Minimal connections between modules
● Consistancy.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Object Design

● Design a generic base class
(I.E. Locomotive)

● Specialize it in the derived classes
(Steam Locomotive, Diesel, Electric)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

The Linked List Problem

C Language Solutions
1) Create 47 different structures and an insert/delete

function for each. (Bad solution).
0 insert_msg / remove_msg

insert_run / remove_run

insert_kbd / remove_kdb

insert_idle / remove_idle

(If you really want to be rotten, use as many different
words for "insert" and "remove" as you can when you
name your functions.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

"C" Linked List Solution

● Define a generic header
struct list_head {

 struct list_head *next, *prev;

}

● Use this at the beginning of all your structures.
struct run_list {

 struct list_head head;

 // Run list stuff

};

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page10

"C" Solution

● Items can now be inserted or removed using
generic functions and casting.
insert_node(

 (struct list_head*)run_list,

 (struct list_head*)new_run);

● Works, but is a "clever" trick
● This is a "C" implementation of a class derivation

mechanism

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page11

C++ Solution
class list {

 private:

 list* next, prev;

 // ...

};

class pending_message_node: public_list {

 // .. message stuff

};

Not well designed.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page12

Templates to the rescue
template class list<typename data> {

 private:

 list* next, prev;

 public:

 data node;

};

Better yet, let someone else write the list
functions. (They are part of the STL.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page13

Callbacks
Command table:

struct cmd_info {
 const char* command;
 void (*function)();
}[] cmd_table[] = {
 {"delete", do_delete},
 {"search", do_search},
 {"exit", do_exit},

};

V.S.
 Event Registration
keyboard_module::register_command("exit", &do_exit);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page14

C++ Couples Interface and
Implementation

phone_book.h

class phone_book {
 public:
 // (Interface function)
 void store(const std::string &name,);

 private:
 // (Implementation functions)
 void internal_consistency_check();
 void save_internal_state();
};

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page15

Decoupled Implementation / Interface
phone_book.h

// No information about this class is in this file
// except that it's some sort of class
class phone_book_implementation;

class phone_book {
 public:
 // (Interface function)
 void store(const std::string &name,);

 private:
 phone_book_implementation*
 the_impelmentation;

};

