Chapter 26
Program Design

Practical C++ Programming

Design Goals

e Reliability
* Economy

e Fase of Use

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Design Factors

* Simplicity

* Information Hiding

* Expandability

* Testable

* Reusability / generality

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Design Principles

1. Think — Then code!
2. Be Lazy (aka. Efficient)

Procedure Design

* Procedures should do one thing well.
* Interface should be as simple as possible.

* (Global interactions should be as limited as
possible.

e Details are hidden.

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Modules

* Organize (Disorganization = government)
* Minimal connections between modules

* Consistancy.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Object Design

* Design a generic base class
(I.E. Locomotive)
* Specialize 1t 1in the derived classes

(Steam Locomotive, Diesel, Electric)

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page7

The Linked List Problem

C Language Solutions

1) Create 47 different structures and an insert/delete
function for each. (Bad solution).

Oinsert _nsg / renove_nsg
lnsert _run / renove_run
l nsert _kbd / renove kdb
Insert _1dle / renove i1dle

(If you really want to be rotten, use as many different
words for "insert" and "remove" as you can when you
name your functions.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

"C" Linked List Solution

* Define a generic header

struct |ist _head {
struct |ist_head *next, *prev,;

}

* Use this at the beginning of all your structures.

struct run_|ist {
struct |ist _head head;
[/ Run list stuff

'

Practical C++ Programming Copyright 2003 O'Reilly and Associates

"C" Solution

* [tems can now be inserted or removed using
generic functions and casting.

| nsert _node(
(struct |list head*)run_ |1 st,
(struct |i1st head*)new run),

* Works, but 1s a "clever" trick

* This 1s a "C" implementation of a class derivation
mechanism

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

C++ Solution

class li1st {
private:
|1 st* next, prev;
[/

'

cl ass pendi ng _nessage _node: public list {
[/ .. message stuff

b

Not well designed.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagell

Templates to the rescue

tenpl ate class |1 st<typenane data> {
private:
|1 st* next, prev;
publ i c:
dat a node;

};
Better yet, let someone else write the list
functions. (They are part of the STL.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

Callbacks

Command table:

struct cnd_info {
const char* command,
void (*function)();
}[] cnd _table[] = {
{"del ete", do_del ete},
{"search", do_search},
{"exit", do_exit},

}i

V.S.
Event Registration

keyboard_nodul e: : regi ster_command("exit", &do_exit);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel3

C++ Couples Interface and
Implementation

phone book.h

cl ass phone_book {

publ i c:

/[l (Interface function)

void store(const std::string &ane,);
private:

[/ (I nplementation functions)
void i nternal consistency_check();
void save internal state();

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Decoupled Implementation / Interface
phone book.h

[/ No infornmation about this class is inthis file
/] except that it's sone sort of class
cl ass phone_book | npl enent ati on;

cl ass phone_book {

publ i c:

/Il (Interface function)

voi d store(const std::string &ane,);
private:

phone_book i npl enent ati on*
t he 1 npel nent ati on;

i

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel5

