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Chapter 26
Program Design
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Design Goals

● Reliability
● Economy
● Ease of Use
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Design Factors

● Simplicity
● Information Hiding
● Expandability
● Testable
● Reusability / generality
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Design Principles

1. Think – Then code!
2. Be Lazy (aka. Efficient)
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Procedure Design

● Procedures should do one thing well.
● Interface should be as simple as possible.
● Global interactions should be as limited as 

possible.
● Details are hidden.
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Modules

● Organize (Disorganization = government)
● Minimal connections between modules
● Consistancy.
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Object Design

● Design a generic base class
(I.E. Locomotive)

● Specialize it in the derived classes
(Steam Locomotive, Diesel, Electric)
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The Linked List Problem

C Language Solutions
1) Create 47 different structures and an insert/delete 

function for each.  (Bad solution).
0 insert_msg / remove_msg

insert_run / remove_run

insert_kbd / remove_kdb

insert_idle / remove_idle

(If you really want to be rotten, use as many different 
words for "insert" and "remove" as you can when you 
name your functions.) 
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"C" Linked List Solution

● Define a generic header
struct list_head {

    struct list_head *next, *prev;

}

● Use this at the beginning of all your structures.
struct run_list {

    struct list_head head;

    // Run list stuff

};
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"C" Solution

● Items can now be inserted or removed using 
generic functions and casting.
insert_node(

    (struct list_head*)run_list,

    (struct list_head*)new_run);

● Works, but is a "clever" trick
● This is a "C" implementation of a class derivation 

mechanism
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C++ Solution
class list {

    private: 

        list* next, prev;

    // ...

};

class pending_message_node: public_list {

    // .. message stuff

};

Not well designed.
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Templates to the rescue
template class list<typename data> {

    private: 

        list* next, prev;

    public:

        data node;

};

Better yet, let someone else write the list 
functions.  (They are part of the STL.)
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Callbacks
Command table:

struct cmd_info {
    const char* command;
    void (*function)();
}[] cmd_table[] = {
   {"delete", do_delete},
   {"search", do_search},
   {"exit", do_exit},
    ....
};

V.S.
    Event Registration
keyboard_module::register_command("exit", &do_exit);
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C++ Couples Interface and 
Implementation

phone_book.h

class phone_book {
    public:
      // (Interface function)
      void store(const std::string &name, ....);

    private:
      // (Implementation functions)
      void internal_consistency_check();
      void save_internal_state();
};
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Decoupled Implementation / Interface
phone_book.h

// No information about this class is in this file
// except that it's some sort of class
class phone_book_implementation;

class phone_book {
    public:
      // (Interface function)
      void store(const std::string &name, ....);

    private:
      phone_book_implementation*
           the_impelmentation;

};


