Chapter - 7
The
Programming
Process

Practical C++ Programming

The Programming Process

f1ig needs
fixing ##
Actually

needs
rewriting for
this format
1

Aséignment

Q

.

Testing

Debugging”~

Practical C++ Programming

Release

Copyright 2003 O'Reilly and Associates

Page2

Setting Up

In general you want to put each program in a separate
directory. To create a directory use the commands:

UNIX:
% cd ~
% nkdir calc
% cd cal c

Microsoft Windows (Command Prompt window):
C.> cd \
C.> nkdir calc
C.> cd calc

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Cal c
A four-function cal cul ator
Prelimnary Specification
Dec. 10, 2002 Steve Qualline
Vr ni ng: This 1s a prelimnary specification. Any

resenbl ance to any software living or dead is purely
coi nci dent al .

Calc is a programthat allows the user to turn his $10, 000
conputer into a $1.98 four-function calculator. The program
adds, subtracts, nmultiplies and divides sinple integers.

When the programis run, it zeros the result register and
di splays its content. The user can then type in an operator
and nunber. The result 1is wupdated and displayed. The
foll owm ng operators are valid:

Qper at or Meani ng

+ Addi ti on

- Subt racti on

* Mul tiplication
/ Di vi si on

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Sample Use

cal c

Result: O

Enter operator and nunber: + 123
Result: 123

Enter operator and nunber: - 23
Result: 100

Enter operator and nunber: / 25
Result: 4

Ent er operator and nunber: * 4
Result: 16

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Code Design

Code design 1s the process of writing down a
description of our program in a clear and easy to
understand manner. Details may be omitted.

Frequently pseudo code 1s used for this purpose:

Loop

Read an oper at or and nunber
D0 the cal cul ati on

Dl splay the result

End- Loop

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

The Prototype

The prototype code contains a small sub-set of the
full program. It Is the smallest sub-set that does
anything. Thisallows usto test it before we write the
full program.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Prototype

#i ncl ude <i ostreanp

| nt result; /'l the result of the cal cul ations
char oper _char; // operator the user specified

| nt val ue; /'l val ue specified after the operator
i nt mai n(){

result = 0; // initialize the result

/1 Loop forever (or till we hit the break statenent)
while (1) {
std::cout << "Result: " << result << '\n';

std::cout << "Enter operator and nunber: ";
std::cin >> oper_char >> val ue;

i f (oper_char ="'+") {
result += val ue;
} else {

std::cout << "Unknown operator " << oper _char << '\n';
}

return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

The Makefile

The program make acts as the programmers
assistant. When you type the command make the
program looks for the file Makefile, reads a
description of how to create the program and
executes the necessary commands.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Makefile for UNIX generic
CC compiler

#

Makefile for many UNI X conpilers using the
"standard" command nane CC

#

CC=CC
CFLAGS=-¢g
all: calc

calc: calc.cpp
$(CC) $(CFLAGS) -0 calc calc.cpp

cl ean:
rm cal ¢

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

Makefile for the GNU g++
compiler

#

Makefile for the Free Software Foundations g+
+ compi | er

#

CC=g++
CFLAGS=-g -\Wal |
all: calc

calc: calc.cpp
$(CC) $(CFLAGS) -0 calc calc.cpp

cl ean:
rm cal ¢

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagell

Makefile for Borland-C++

#

Makefile for Borland' s Borland-C++ conpil er
#

CC=bcc32

#

Fl ags

-N -- Check for stack overfl ow
-v -- Enabl e debuggi ng

-W -- Turn on all warnings

-tWC -- Console application

#

CFLAGS=-N -v -w -tWC
all: calc. exe

cal c. exe: calc.cpp
$(CC) $(CFLAGS) -ecalc calc.cpp

cl ean:
erase cal c. exe

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

Makefile for Visual-C++ .NET

Makefile for Mcrosoft Visual C++

#

CC=cl

Fl ags

&Z - Enabl e stack checking

RTCsuc -- Enable all runtine checks
Zi -- Enabl e debuggi ng

Wall -- Turn on warnings (Omtted)
EHsc -- Turn exceptions on

CFLAGS=/ &Z [/ RTCsuc /Zi [EHsc

all: calc.exe

cal c. exe: calc.cpp
$(CC) $(CFLAGS) calc.cpp

cl ean:
er ase cal c. exe

Warning: The Visual C++ make utility is named nmake.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel3

Testing

Once the program 1s compiled without errors, we
can move on to the testing phase. Now is the time to
start writing a test plan. This document i1s simply a
list of the steps we perform to make sure the
program works. It 1s written for two reasons.

» If a bug 1s found, we want to be able to reproduce
it.

* If we ever change the program, we will want to
re-test 1t to make sure new code did not break any
of the sections of the program that were
previously working.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Test Plan
Test plan:

Try the foll owm ng operations

+ 123 Result should be 123
+ 52 Result should be 175
X 37 Error nmessage shoul d be out put
Running the program we get:
Result: O
Ent er operator and nunmber: + 123
Result: 123
Ent er operator and nunber: + 52
Result: 175
Ent er operator and nunber: x 37
Result: 212

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel5

Debugging

One of the simplest ways of debugging is to put print statements in your
program. We’ll put one before the data goes bad (just to make sure 1t’s good)
and one after, to see what went wrong.

std::cout << "Enter operator and nunber: ";
std::cin >> val ue >> operator;

std::cout << "## after cin " <<operator << '\n';

| f (operator = "'+') {
std::cout << "## after 1f " << ogperator << '\n';
result += val ue;

Note: The ## 1s used to indicate that this is a debug line. It also makes it easier
to remove all debugging statements when we’re done.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel6

Debug Output

Result: O
Enter operator and nunber: + 123
Result: 123

Ent er operator and nunber: + 52
after cin +

after 1f +

Result: 175

Enter operator and nunber: x 37
after cin X

after 1f +

Result: 212

Y ou should now be able to spot the problem.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel7

Y ou wer e war ned!

Remember when we were discussing = vs. = =,

I told you then that this 1s a very common error and
you will make 1t. The reason we go on and on about
it here 1s so that you will be aware of it and able to
fix 1t when 1t does occur.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel8

Finished Program

#1 ncl ude <i ostreanp

I nt resul t; /] the result of the cal cul ati ons
char oper _char; // operator the user specified
| nt val ue; /'l value specified after the operator
mai n()
{

result = 0; // initialize the result

/'l loop forever (or until break reached)

while (1) {

std::cout << "Result: " << result << '"\'n';

std::cout << "Enter operator and nunber: ";

std::cin >> oper_char >> val ue;

if ((oper_char == "'q') || (oper_char == "Q))
br eak;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel9

Finished Program (cont.)

| f (oper _char == "'+") {
result += val ue;
} else if (oper _char == "-") {
result -= val ue;
} else if (oper _char == "*") {
result *= val ue;
} else if (oper _char == "'/") {

I f (value == 0) {
std::cout << "Error:D vide by zero\n";

std::cout << " operation i gnored\n";
} el se
result /= val ue;
} else {

std::cout << "Unknown operator " <<
oper _char << '\n';
}
}
return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Finished Test Plan

We expand our test plan to include the new operators and try it again.

+ 123 Result should be 123

+ 52 Result should be 175

X 37 Error nmessage shoul d be out put
- 175 Result should be zero

+ 10 Result should be 10

/| 5 Result should be 2

/ O Di vide by zero error

* 8 Result should be 16

Program shoul d exit

®)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

M aintenance and
Revisions

No matter how much testing 1s done on a program the user
can always find at least one more bug. During the
maintenance phase, these bugs are found and removed.

Revisions

No matter how complete a program, the user will want one
more feature. So you revise the specifications, add the
change to the program, update the test plan, test the program
and release 1t again.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page22

Electronic Archeology

The art of going through someone else’s code to
discover amazing things
(like how and why the code works).

Contrary to popular belief, most C++ programs are
not written by dyslexic orangutans using Zen
programming techniques, and poorly commented 1n
Swahili. They just look that way.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Odeto a maintenance
programmer

Once more I travel that lone dark road
into someone else’s impossible code
Through “i1f”” and “switch” and “do” and “while”
that twist and turn for mile and mile
Clever code full of traps and tricks
and you must discover how it ticks
And then I emerge to ask a new,
“What the heck does this program do?”

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Ar chaeological tools

*e Editor (browser)
*e Cross referencer
*egrep
*eindention tools
*epretty printers
*ecall graphs
*edebuggers

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page25

Techniques

@® Mark up the program (several colored pens are useful)
® Go through and comment the code

® Change the short variables to long ones

® Add comments

Int state;// Controls sone sort of state machi ne
Int rnxy; // Something to do wth color correction?
Int 1dn; [7?77

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page26

A far Too Typical Program

#1 ncl ude <i ostreanp
#1 ncl ude <stdlib. h>
I nt g, |, h, ¢, n;char 1|1ine[80];
I nt mai n() {
while (1) {
/[*Not Real | y*/
g = rand() % 100 + 1;
| = 0; h = 100; ¢ =
while (1) {
std::cout << "Bounds " << | <<
" - " << h << '\n:

0;

std::cout << "Value[" << c << "]? ",
++C;

std::cin >> n;

I f (n == g) Dbreak;

If (n<g) | =n; else h =n;
}
std::cout << "Bingo\n";
}
return (0);

Practicalk++ Programming Copyright 2003 O'Reilly and Associates Page27

A Better Version

/**

* guess -- a sinple guessing gane

Usage:
guess

A random nunber i s chosen between 1 and 100.
The player is given a set of bounds and

must choose a nunber between them

| f the player chooses the correct nunber he w ns*
Q herw se the bounds are adjusted to refl ect

t he players guess and the gane conti nues

* % ok ok X * kX

*
*
*
Restrictions: *
The random nunber is generated by the statenent *
rand() % 100. Because rand() returns a nunber *
O <=rand() <= maxint this slightly favors *
* t he | ower nunbers. *
Rk S S b b b i i i b b b b i i i i b b b i i Sl i b i i i i S S i i i i i b i b b i i i i b b b i i i b b b b i Y
#i ncl ude <i ostreanr
#i ncl ude <stdlib. h>

% ok k% ok ok X ok ok X ok ok ¥ oF

/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page28

A Better Version (cont.)

| nt nunber to guess; [// random nunber to be guessed

[/ current lower |[imt of player's range
| nt low limt;

[l current upper limt of player's range
| nt high limt;

| nt guess_count; /'l nunber of tinmes player guessed
| nt pl ayer nunber; /'l nunber gotten fromthe player
char |1 ne[80]; [l 1nput buffer for a single |ine

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page29

A Better Version (cont.)

I nt main()
{
while (1) {
/*
* Not a pure random nunber, see restrictions
*/

nunber to guess = rand() % 100 + 1;

/[l Initialize variables for |oop
low limt = O

high limt = 100;

guess_count = 0;

while (1) {
/1l tell user what the bounds are and get his guess
std::cout << "Bounds " << lowlimt <<
" - " << highlimt << '\'n';
std::cout << "Value[" << guess count << "]? ";

++guess_count ;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page30

A Better Version (cont.)

std::cin >> player nunber;

/1 did he guess right?
| f (player _nunber == nunber to_guess)
br eak;

/| adjust bounds for next guess

I f (player _nunber < nunber to_guess)
low limt = player nunber;

el se
high |imt = player_ nunber;

}
std::cout << "Bingo\n";

return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page31

