Chapter - 5
Arrays, Qualifiers
and Reading
Numbers

Practical C++ Programming

Arrays

Simple variables allow user to declare one item, such as a single width:

| nt w dt h; /[l Wdth of the rectangle in inches

If we have a number of similar items, we can use an array to declare them. For
example, if we want declare a variable to hold the widths of 1000 rectangles.

Int wdth |ist[1000]; [/ Wdth of each rectangle

The width of the first rectangle is W dt h[O] the width of the second rectangle is
W dt h[1] and so on until W dt h[999] .

Warning:

Common sense tells you that the last element of the width array is Wi dt h
[1000] . Common sense has nothing to do with programming and the last
element of the array is W dt h[999] .

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Computing the average of 6 numbers

#1 ncl ude <i ostreanp

float data[5]; // data to average and total
float total; /'l the total of the data itens
fl oat average; // average of the itens

int main()

{
data[0] = 34.0;
data[1] = 27.0;
data[2] = 46.5;
data[3] = 82.0;
data[4] = 22.0;

total = data[0] + data[l1l] + data[2] + data[3] + data[4];

average = total / 5.0;
std::cout << "Total " << total <<

" Average " << average << '\n';
return (0);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

C++ Strings

Bring in the string package using the statement:
#1 nclude <string>
Declaring astring
std::string ny_nane; [/ The nanme of the user
Assigning the string avalue;
ny_nane = "Qualline";
Using the “+” operator to concatenate strings.

"Steve"; last _nane = "Qual line";
" " + |ast_nane;

first _nane
full nanme = first_name +

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page4

Moreon Strings

Extract a substring:
result = str.substr(first, last);
I/ 01234567890123

str = "This is a test";
sub = str.substr(5, 6);
/ / Su - 13 123”

Finding the length of a string

string.length()

Wide strings contain wide characters. Example:

std: :wstring funny_nane;
// 1f you see nothing between the "" bel ow then you
/1l don't have Chinese fonts installed

funny name = L" ¥ 5 &E";

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Accessing charactersin a
string

You can treat strings like arrays, but this 1s not safe:
/] CGets the sixth character
ch = str[5];
[/ WII not check to see If
/] the string has 6 characters
Better (and much safer)
[/ Gets the sixth character
/] Aborts programif
/] there Is no such character
ch = str.at(5);

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

C

Reading Data

T'he standard class st d: : cout is used with << for writing

ata.

la B

T'he standard class st d: : ci n is used with >> for reading

data

std::cin >> price >> nunber_on_hand;

Numbers are separated by whitespace (spaces, tabs, or
newlines).
For example, if our input 1s:

32 6

Then pri ce gets 32 and nunber _on_hand gets 6.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Doubling a number

#i ncl ude <i ostreanpr
| nt val ue; /] a val ue to doubl e

I nt mai n()

{

std::cout << "Enter a value: ":
std::cin >> val ue;

std::cout << "Tw ce " << val ue <<
"is " << value * 2 << '\n';

return (0);

Sample run
Enter a val ue: 12
TwWce 12 is 24

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Question: Why isw dt h undefined?

#1 ncl ude <i ostreanp

int height; /* the height of the triangle
Int w dth; [* the wdth of the triangle */

int area, [* area of the triangle (conputed) */
mai n()
{
std::cout << "Enter wdth height? ";
std::cin >> wdth >> height;
area = (wwdth * height) / 2;
std::cout << "The area is " << area << '\n';
return (0);
}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Reading Strings

The combination of std: : ci n and >> works fine for integers, floating
point numbers and characters. It does not work well for strings.

To read a string use the get | i ne function.
std::getline(std::cin, string);

For example:
std::string nane, /1 The nane of a person

std::getline(std::cin, nane),

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

Initializing Variables

The new C++ style initialization:
I nt counter(0); /'l nunber cases counted so far

The older C style syntax.
Il nt counter = O; /1l nunber cases counted so far

Array 1initialization:
[/ Product nunbers for the parts we are naking
| nt product codes[3] = {10, 972, 45},

Implied dimensioning of arrays:
[/ Product nunbers for the parts we are naking
| nt product codes[] = {10, 972, 45},

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagell

Bounds Errors

Example:
I nt datal 5] ;
result = data[99]; /| Bad

Example of a bigger problem:
| nt datal 5] ;

dat a[99] = 55; /'l Very Bad

Modifies random memory.

C++ will not check for this!!

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

tassert” Isyour friend

The assert function checks to see 1t a condition i1s true.

If 1t 1s not, the program is aborted.

Example:
#1 ncl ude <assert. h>

Il nt mal n()

{
int 1 = 2
assert(i == 3);
return (0),;

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Pagel3

Protecting arrays with
assert

Exanpl e:

#1 ncl ude <assert. h>
| nt datal 5] ;
I nt 1 ndex;

I nt mai n()

{

| ndex = 5;

assert (i ndex >= 0);
assert (i ndex < 5); /] Not the best way of doing it

| ndex = dat a1 ndex];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Using S| zeof to automatically
compute the array limit.

The si zeof function returns the number of bytes allocated to a variable.

Definitions:

si zeof (array) Number of bytes in an array

si zeof (array[0]) ; Number of bytes in an element of the arrays
Therefore

nunber of el enments =
si zeof _array in bytes / sizeof elenment in_bytes
In C++:
assert (i ndex >= 0);
assert (i ndex < (sizeof(data) / sizeof(data[O0]));

| ndex = data[i ndex];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel5

Multiple Dimensional Arrays

type vari abl e[si zel][size2]; // comment

Example:
[/ a typical matriXx
Int matrix[2][4];

Notice that C++ does not follow the notation used in other languages:
matri x[10, 12] // Not C++

To access an element of the mat r i X we use the notation:
matri x[1][2] = 10;

More than two dimensions can be used:
four _dinensions[10][12][9]][5];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel6

Initializing Matrices
[/ a typical matrix
Int matrix[2][4] =
{ {1, 2, 3, 4},
{10, 20, 30, 40}

'

This 1s shorthand for:

matri x[0][O0] = 1;
matri x[0][1] = 2;
matri x[0][2] = 3;
matri x[0] [3] = 4;
matri x[1] [0] = 10;
matri x[1] [1] = 20;
matri x[1][2] = 30;
matri x[1] [3] = 40;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel7

Question: Why does this program

produce funny answers?

#i1 ncl ude <i ostreanp

Int array[3][5] = { /1 Two di nensi onal

{ O, 11 21 31 4 }’
{10, 11, 12, 13, 14 1},
{20, 21, 22, 23, 24}

b
I nt main()
{
std::cout << "Last elenent is " <<
array[2,4] << '\n';
return (0);
}

When run on a Sun 3/50 this program generates:
Last elenment is 0x201e8

Practical C++ Programming Copyright 2003 O'Reilly and Associates

array

Pagel8

C Style Strings

C Style Strings are constructed from arrays of characters.

[/ A string of up to 99 characters
char a string[100];

Strings end in the special character \ 0" (NUL).

a string[0] ="'5;
a string[1l] = "a';
a string[2] ='mM;
a string[3] ="'\0"; // End the string

The variable a_st r i ng contains the string "Sant' .

Note: a_stri ng now holds a string of length 3. It can hold any length
string up to 99 characters long. (One character must be reserved for the end-
of-string marker ' \ 0" .)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel9

Question

2% ¢¢

Are all “strings™ “‘arrays of characters”?

2% ¢6¢

Are all “character arrays” “strings”?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Using C Style Strings
String constants are enclosed in double quotes. Example: " Sant' .

Strings can not be directly assigned.

a string = "Sant; [l 11l egal

The standard function st d: : st r cpy can be used to copy a string.

#i ncl ude <cstring>
[l
std::strcpy(a_string, "Sant); // Legal.
[/ But danger ous

Note: #1 ncl ude <cstri ng> tells C++ that we are using the standard
string package.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

Standard C Style String Functions

| engt h)

Function Description

std::strcpy(stringl, string2) Copiesstring2intostringl. (Unsafe)

std::strncpy(stringl, string2, |Copiesstring2intostringl butlimitthe

| engt h) number of characters copied (including the end

of string) to | engt h. (Safer)

std::strcat(stringl, string2) Concatenates st r i ng2 onto the end of
stringl. (Unsafe)

std::strncat(stringl, string2, |Concatenatesstri ng2 ontotheend of

stringl. Limitthe number of characters
added to | engt h. Does not guarantee that
an end of string will be copied. (Saf er)

| ength = std::strlen(string) Gets the length of a string. (Safe)
std::strcnp(stringl, string2) Oif stringlequalsstrings2,
otherwise non-zero. (Safe)
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page22

Usingst d: : strcpy

#1 ncl ude <i ostreanvp
#1 ncl ude <cstring>

char nane[30]; // First nanme of soneone

mai n()
{
std::strcpy(nanme, "Sant);
std::cout << "The nanme is " <<
name << '\n';:
return (0);

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Combining Two Names

#i ncl ude <cstring>
#i ncl ude <i ostreanp

char first[100]; [l first nane
char |ast[100]; [l |ast nane
char full _nanme[100]; [l full version of first and | ast nane
i nt main()
{
std::strcpy(first, "Steve"); /[l Initialize first nane

std::strcpy(last, "Qualline"); // Initialize |ast nane

std::strcpy(full _nane, first); [/ full = "Steve"

/'l Note: strcat not strcpy

std::strcat(full _nane, " "); [l full = "Steve "
std::strcat(full _nanme, |ast); [l full = "Steve CQualline"

std::cout << "The full name is \n';

return (0);

<< full _nanme <<

}

Outputs:
The full nanme is Steve Qualline

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Initializing Strings
char name[] = {'S, 'a', 'mM, '"\0"};

C++ has a special shorthand for initializing strings, by using double quotes (") to
simplify the initialization.

char name[] = "Sam';

The dimension of nane is 4, because C++ allocates a place for the "\0’ character
that ends the string.

Note:
char string[50] = "Sant;

Declares a string variable that can hold strings that are 0 to 49 characters long, but
initializes the string to a 4 character string.

The statement initializes only 4 of the 50 values in St r i ng. The other 46 elements

are not initialized and may contain random data.
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page25

Finding thelength of C Style string

#i ncl ude <cstring>
#i ncl ude <i ostreanp

char |ine[100]; // A line of data

i nt main()

{

std::cout << "Enter a line:";
std::cin.getline(line, sizeof(line));

std::cout << "The length of the line is: " <<
std::strlen(line) << '"\n';
return (0);

}

When we run this program we get:
Enter a line:test
The length of the line is: 4

Question: What is the size of | i ne and what is the length of | i ne? What’s the
difference?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page26

Safe C Style Strings

Safe copy
assert (sizeof (nane) >= sizeof(“Qualline”));
std::strcpy(nane, “Qualline”);

assert(sizeof (nane) > std::strlen(first_nane));
std::strcpy(nane, first_nane);

std::strncpy(nanme, |ast_nane, sizeof(nane)-1);
Safe concatenation:
std::strncat (nane, |ast_nane,
si zeof (nane) — strlen(nane) -1);
nane[si zeof (nane)-1] = '\0";

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page27

Reading C Style Strings

char nane[50] ;
[l ...

std::getline(std::cin,
nane, sl zeof (nane);

Converting between string types

char c_string[100];
std::string cpp_string;

C Style string => C++ String -- Just assign
cpp_string = c_string;
C++ String => C String — use the ¢_ st r function call

strncpy(c_string, cpp_string.c_str(),
si zeof (c_string));

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page29

String differences

C++ Strings C Strings

Memory Automatic Manual
Allocation

Length Variable Limited
Safety Good Bad

Efficency / Medium Fast
Speed

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page30

Typesof Integers

Integers come in various flavors:

int Normal storage used
long int Extra storage may be used

Long Integer constants are specified with “L” at the end
[/ Amount 1 n account (in cents)
| ong I nt anount = 12345L,;
short int
Reduced storage may be used

signed Numbers can be positive or negative (the default)
unsigned
Only positive numbers allowed.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page31

Very Short Integers

Character variables can be used to store very short integers (in the range
from -128 to 127 (signed) or 0 to 255 (unsigned)).
Example:

[l 1f set, pre-process the input

unsi gned char flag = 1;

Question: Is the following character variable signed or unsigned?

char foo;
Answers:
a. It’s signed.
b. It’s unsigned.
C. If we always specify signed or unsigned we don’t have to worry

about problems like this.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page32

Reading and Writing Very Short
|ntegers

Writing very short integers can be done by using the
st ati c_cast <i nt > operation.
unsi gned char flag = 1;

std::cout << "Flag is " <<
static_cast<int>(flag) << "\n";

Reading of very short integers can not be done directly. You
must read an integer and assign 1t to a very short integer.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page33

Types of Floating Point
numbers

float
Normal floating point number. (Default range
and precision.)

double
Double precision (and double range) floating
point number.

long double
(Not-standard. Available only on a few
compilers.)
Extended precision and range.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page34

Constant Declar ations

/] The classic circle constant
const float Pl = 3.1415926;

Note:

By convention variable names use lower case only names while constants use upper
case only. However there 1s nothing in the language that requires this and several
programming systems use a different convention.

A constant can not be changed:

Pl = 3.0; [l 111 egal
Integer constants can be used as a size parameter when declaring an array.
/1 Max. num of elenents in total Iist.

const int TOTAL MAX = 50;
/|l Total values for each category
float total |ist[TOTAL MAX];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page35

Refer ence Declar ations

Reference declarations allow you to give another name to an existing
variable (an alias.)

Example:

I nt count; /1 Nunmber of itenms so far

| nt &actual count = count;

/1 Anot her nanme for count

From now on count and act ual _count are the same variable. Anything
done to count is reflected in act ual _count .

Value 5
Var. count | nt count;
Name actual count I nt actual count = count;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page36

Qualifiers

The complete list of qualifiers

Special Class Size Sign Type

vol ati|l eregister | ong signed int

<bl ank> static short unsi gned f | oat
extern double <blank> char
aut o <bl ank> <bl ank>
<bl ank>

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page37

Special

violate Indicates a special variable who’s value
may change at any time. (Used 1n
specialized programming not covered by
this course.)

<blank> Normal variable.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page38

Variable Class

register This indicates a frequently used variable
that should be kept in a machine register.

static The meaning of this word depends on the
context.

extern The variable 1s defined in another file.

auto A variable allocated from the stack. This

keyword 1s hardly ever used.
<blank> Indicates that the default class (auto) 1s
selected.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page39

Size

long Indicates a larger than normal
integer. (Some non-standard
compilers use long double to
indicate a very large floating point
variable).

short A smaller than normal integer.

double A double size floating point number.

<blank> Indicates a normal size number.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page40

Sign

signed Values range from the negative to the positive. Always true
for floating point numbers.

unsigned
Positive numbers only allowed.

<blank>
For integers defaults to signed.

Character variables may be signed, unsigned or <blank>. These are
three differ-ent types of variables and may not be mixed. The <blank>
indicator should be use for character variables which will hold only
characters instead of very short integers. For very short integers, you
should always specify signed or unsigned.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page41

Type

int Integer.
float Floating point numbers.
char Single characters, but can also be used

for very short integers.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4?2

Hexadecimal and Octal
Constants

Hexadecimal constants (base 16) begin with Ox. (0x12)
Octal constants (base 8) begin with aleading 0. (012)

Base 10 Base8 Base 16
6 06 OX6
9 011 0x9
15 017 OxF

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page43

ractical C++ Programming Copyright 2003 O'Reilly and Associates

Question: Why doesthe following
program fail to print the correct zip
code? What doesit print instead?

| ong i nt zip; /'l Zip code
I nt mai n()
{
zip = 02137L; /] Use the Zip Code for Canbridge NA

std::cout <<"New York's Zip code is: "<< zip << '\n';
return(0).

}

Paged44

Shortcut operators

The code:

total _entries = total _entries + 1,
Can be replaced by:

++total _entries;
Similarly:

total entries = total _entries - 1,
Can be replaced by:

--total _entries;

Also
total entries = total _entries + 2

1s the same as
total _entries += 2;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page45

Shorthand Operators

Operator Shorthand Equivalent Statement
+= X += 2; X = X + 2;
- = X -=2; X =X - 2;
*= X *= 2; X =X * 2;
= X =2 x =x1 2;
U5 X % 2 X = X % 2;
Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page46

Side Effects

A side effect occurs when you have a statement that performs a main
operation and also another operation:
Example:
sl ze = 5;
result = ++size;
The first statement assigns Si ze the value of 6. The second statement:
1. Increments Si ze. (side effect).
2. Assigns r esul t the value of SI ze (main operation).

Do not use side effects. They confuse the code, add risk to your program and
in general, cause a lot of trouble. We are after clear code, not clever compact
code.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Paged7

Problemswith side effects

val ue = 1,
result = (value++ * 5) + (value++ * 3);

This expression tells C++ to perform the steps:

a. Multiply val ue by 5, add 1 to val ue.
b. Multiply val ue by 3, add 1 to val ue.
C. Add the results of the two multiplies together.

But in what order?

Steps a. and b. are of equal priority so the compiler can execute them in any
order it wants to.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page48

"a" first

(value++ * 5) + (value++ * 3);

result

, _ ++O0pergy;
Evaluate 1st expression -~ oy, _

"4
value

Evaluate 2nd expression

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page49

"b" First

result

(value++ * 5) +

.+ operation

Evaluate 2nd expression:’
| 4

i§§ .
! J 0N

AR
<+ :
f

ﬁ§§

(value++ * 3);

Evaluate 1st expression

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page50

Final Warning

We’ve not discussed all of the problems that side
effects can cause. We’'ll see how side effects can
cause havoc when we study the pre-processor. The
simple rule 1s:

Put ++ and -- on lines by themselves.

This avoids a tremendous amount of risk. Your
programs have enough problems without your
playing with fire.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page51

