
電腦與問題解決學習單

		班級	座號	姓名		
- 、	問題解決的概念					
	Ⅰ 人類思考問題的方	式可分為		與		· ·
	■ 垂直思考又稱		,強調按剖	『就班、循序	序漸進的流和	呈。
	▮水平思考又稱		,相對於垂	直思考模式	式,水平思 ^表	芳屬於跳躍
	性思考,思考方向	會從問題的本	身四處發散	で、想法間ス	下一定會彼山	七相關聯,
	也不會有所謂對與	錯的答案。				
	Ⅰ 腦筋急轉彎或冷笑	話算是	思考的	〕 一種,答第	案往往是意料	斗之外的答
	案。					
	Ⅰ對電腦而言,	思考比	較容易直接	吴轉化成實 際	祭的解題程:	t •
	思考有	突破僵直有限	的思考模式	、 ,找到新角	 双題方向的 特	寺性。
二、	電腦解題的限制					
	▲ 在待解決的問題中	, 若問題牽涉	到	, ந		無
	法掌握,一般而言	,電腦只能提信	洪參考 ,對	問題的解決	不一定有幫	助。例如:
	問題、	問題	`	問題。	o .	
三、	電腦解題程序					
	■ 電腦解題程序的三	大步驟:				
	1 >		2、			
	3、					
	Ⅰ 設計電腦的解題方	法步驟為(1)				
	(2)		()	3)		
	Ⅰ 設計好的解題方法	必須進行測試	,測試程式	是否運作工	E常。一般涯	則試資料可
	分為	和	· ·			
	Ⅰ 常見的程式錯誤類	型可分為:		· `	錯誤、	錯誤。
四、	演算法概論					
	Ⅰ 由於電腦只能依照	「程式」指示	逐步完成指	定的工作 :	,因此在設言	十程式時必
	須先將問題分解成	許多 <u>小步驟</u> ,	然後再依 <u>-</u>	-定的次序运	逐步執行,內	页這個描述
	問題解決程序的方	法便稱做		0		

做。	乍,一系列有次序且明確的指令集合我們
演算法的特性包括	
1.	2 `
3、	
5、	<u> </u>
演算法的基本元件包括	
1、	2、
3、	4、
演算法的表示方法常見的有	•
如果程式沒有一定架構,完全隨	遀著自己的喜好撰寫程式,當程式碼變得
大時,就會看起來雜亂無章,讓	襄維護程式碼的人很難進行維護。荷蘭的
家 <u>戴克斯特拉</u> (Edsger W. Dijkstra	a) 提出
(structured programming) 的概念	:,強調 <u>程式要簡單明瞭</u> 。
結構化程式設計必須遵循的原則	刂為:
1、採用的方.	式將程式分解成多個模組,每個模組分別
責一件獨立的工作。	
2、每個模組只能有	。
3、每個模組可以由、	
程式設計的三種基本結構:	
В	F
А:	٨٠
,	外面下雨? 去公園玩

